Capacity Allocation Mechanisms for Grid Environments
نویسنده
چکیده
During the past decade, Grid computing has gained popularity as a means to build powerful computing infrastructures by aggregating distributed computing capacity. Grid technology allows computing resources that belong to different organizations to be integrated into a single unified system image – a Grid. As such, Grid technology constitutes a key enabler of large-scale, crossorganizational sharing of computing resources. An important objective for the Virtual Organizations (VOs) that result from such sharing is to tame the distributed capacity of the Grid in order to manage it and make fair and efficient use of the pooled computing resources. Most Grids to date have, however, been completely unregulated, essentially serving as a “source of free CPU cycles” for authorized Grid users. Whenever unrestricted access is admitted to a shared resource there is a risk of overexploitation and degradation of the common resource, a phenomenon often referred to as “the tragedy of the commons”. This thesis addresses this problem by presenting two complementary Grid capacity allocation systems that allow the aggregate computing capacity of a Grid to be divided between users in order to protect the Grid from overuse while delivering fair service that satisfies the individual computational needs of different user groups. These two Grid capacity allocation mechanisms constitute the core contribution of this thesis. The first mechanism, the SweGrid Accounting System (SGAS), addresses the need for coordinated soft, real-time quota enforcement across Grid sites. The SGAS project was an early adopter of the serviceoriented principles that are now common practice in the Grid community, and the system has been tested in the Swegrid production environment. Furthermore, SGAS has been included in the Globus Toolkit, the de-facto standard Grid middleware toolkit. SGAS employs a credit-based allocation model where research projects are granted quota allowances that can be spent across the Grid resources, which charge users for their resource consumption. This enforcement of usage limits thus produces real-time overuse protection. The second approach, employed by the Fair Share Grid (FSGrid) system, uses a share-based allocation model where project entitlements are expressed in terms of hierarchical share policies that logically divide the Grid capacity between user groups. By coordinating local job scheduling to maintain these global capacity shares, the Grid resources collectively strive to schedule users for a “share of the Grid”. We refer to this cooperative scheduling model as decentralized Grid-wide fairshare scheduling.
منابع مشابه
Scalable Grid-wide capacity allocation with the SweGrid Accounting System (SGAS)
The SweGrid Accounting System (SGAS) allocates capacity in collaborative Grid environments by coordinating enforcement of Grid-wide usage limits as a means to offer usage guarantees and prevent overuse. SGAS employs a credit-based allocation model where Grid capacity is granted to projects via Grid-wide quota allowances that can be spent across the Grid resources. The resources collectively enf...
متن کاملHarnessing the Capacity of Computational Grids for High Energy Physics
By harnessing available computing resources on the network, computational grids can deliver large amounts of computing capacity to the high energy physics (HEP) community. Supporting HEP applications, which typically make heavy memory and I/O demands, requires careful co-allocation of network, storage, and computing resources. The grid manager must ensure that applications have the necessary re...
متن کاملEconomic Models for Management of Resources in Peer-to-Peer and Grid Computing
The accelerated development in Peer-to-Peer (P2P) and Grid computing has positioned them as promising next generation computing platforms. They enable the creation of Virtual Enterprises (VE) for sharing resources distributed across the world. However, resource management, application development and usage models in these environments is a complex undertaking. This is due to the geographic dist...
متن کاملThe Cactus Worm: Dynamic Resource Discovery and Allocation in a Grid Environment
The ability to harness heterogeneous, dynamically available “Grid” resources is attractive to typically resource-starved computational scientists and engineers, as in principle it can increase, by significant factors, the number of cycles that can be delivered to applications. However, new adaptive application structures and dynamic runtime system mechanisms are required if we are to operate ef...
متن کاملA negotiation-based method for task allocation with time constraints in open grid environments
This paper addresses the task allocation problem in an open, dynamic grid environments and service-oriented environments. In such environments, both grid/service providers and consumers can be modelled as intelligent agents. These agents can leave and enter the environment freely at any time. Task allocation under time constraints becomes a challenging issue in such environments because it is d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006